Home > FACULTY >Retired Ex-Employees FACULTY
HU, Jiazhi
E-mail: hujz(AT)pku.edu.cn
Title:
Investigator
Lab Homepage: http://hulab.pku.edu.cn
Personal Homepage: http://
Resume
Education
Aug. 2012, College of Life Sciences, Peking University, Beijing, China
Ph. D. in Biochemistry and Molecular Biology. Supervisor: Dr. Daochun Kong.
Professional Experience
Oct. 2016, Center for Life Sciences and College of Life Sciences, Peking University
Assistant professor

Sep. 2012, Program in Cellular & Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
Research Fellow in Dr. Frederick Alt’s lab.
Honors and Awards
2022 Teaching Award-Outstanding Young Scholar
2021 Zheng Changxue Teaching Award
2018 Qiu Shi Outstanding Young Scholar
2018 Bayer Scholar
2018 Green Leaf Biomedical Outstanding Young Scholar
2017 Yi-Fang Scholar
2016 Harvard Chinese Life Science Research Award
2014 Cancer Research Institute Irvington Fellowship
2012 Ray Wu Prize
2012 Beijing Outstanding Graduate Student
2012 Excellent Graduate Thesis of Peking University
2012 Outstanding Graduate of Peking University
2012 Leica Top Grade Scholarship
2012 Johnson & Johnson Asia Outstanding Graduate Thesis Award in Bio-tech
Research Interests
In our laboratory, we primarily study immune cells from mice and humans, focusing on:
1. Investigating the relationship between DNA replication, DNA damage, DNA metabolism, genome stability, and tumor occurrence in the complex chromatin environment of mammals.
2. Exploring changes in lymphocyte function and associated DNA metabolism changes over time and across different tissues, at temporal and spatial scales, during the aging process.
3. Studying the development and maturation mechanisms of antibodies and utilizing synthetic biology techniques to modify cells, promoting antibody production and antibody evolution.
Representative Peer-Reviewed Publications
SELECTED PUBLICATIONS (# co-first authors, *co-corresponding authors)
Liu Y#, Zhangding Z#, Liu X#, Gan T, Ai C, Wu J, Liang H, Chen M, Guo Y, Lu R, Jiang Y, Ji X, Gao N, Kong DC, Li Q & Hu J (2024). Fork coupling directs DNA replication elongation and termination. Science. 2024.Mar; 383(6688):1215-22. doi:10.1126/science.adj7606.

Wu J#, Liu Y#, Zhangding Z#, Liu X#, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W & Hu J (2023). Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nature Genetics. 2023.Aug; 55(8):1347-1358. doi:10.1038/s41588-023-01458-z.

Yin J#, Fang K#, Gao Y#, Ou L, Yuan S, Xin C, Wu W, Wu W-W, Hong J, Yang H*, & Hu J* (2022) Safeguarding genome integrity during gene-editing therapy of age-related macular degeneration. Nature Communications 13(1):7867. doi: 10.1038/s41467-022-35640-4.

Yin S#, Zhang M#, Liu Y#, Sun X, Chen X, Yang L, Huo Y, Yang J, Zhang X, Han H, Zhang J, Li G, Xiao M, Guan Y, Liu M, Hu J*, Wang L* & Li D* (2022) Engineering of efficiency enhanced Cas9 and base editors with improved gene therapy efficacies. Molecular Therapy S1525-0016(22)00672-4. doi: 10.1016/j.ymthe.2022.11.014.

Wu J#, Zou Ziye#, Liu Y#,*, Liu X, Zhangding Z, Xu M* & Hu J* (2022). CRISPR/Cas9-induced structural variations expand in T lymphocytes in vivo. Nucleic Acids Research 50(19):11128-11137. doi: 10.1093/nar/gkac887.

Xin C#, Yin J#, Yuan S, Ou L, Liu M, Zhang W & Hu J (2022). Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nature Communications 13(1):5623. doi: 10.1038/ s41467-022-33346-1.

Chen X#, Niu X#, Liu Y#, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X, Liu M, Jing F, Liu M, Hu J*, Wang L* & Li D* (2022). Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics S1673-8527(22)00159-X. doi: 10.1016/j.jgg.2022.06.001.

Yin J & Hu J (2022). The origin of unwanted editing byproducts in gene editing. Acta Biochim Biophys Sin 54(6):1-15. doi: 10.3724/abbs.2022056.

Xie X#, Gan T#, Rao B#, Zhang W, Panchakshari RA, Yang D, Ji X, Cao Y, Alt FW, Meng F-L* & Hu J* (2022). C-terminal deletion-induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO J 41(11):e109324. doi: 10.15252/embj.2021109324.

Yin J#, Lu R#, Xin C#, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, LEE HY, Liu T & Hu J (2022). Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications 8;13(1):1204. doi: 10.1038/s41467-022-28900-w.

Liu Y#,*, Yin J#, Gan T#, Liu M, Xin C, Zhang W & Hu J* (2022). PEM-seq comprehensively quantifies DNA repair outcomes during gene-editing and DSB repair. STAR Protocols 3(1), 101088. doi: 10.1016/j.xpro.2021.101088

Gan T, Wang Y, Schatz DG & Hu J (2021). RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 37, 209824. doi:10.1016/j.celrep.2021.109824

Liu M#, Zhang W#, Xin C#, Yin J, Shang Y, Ai C, Li J, Meng F-L & Hu J (2021). Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Research 49(15):8732-8742. doi: 10.1093/nar/gkab6 86.

Zhang W#, Yin J#,*, Zhang-Ding Z, Xin C, Liu M, Wang Y, Ai C & Hu J (2021). In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Nucleic Acids Research gkab507. doi: 10.1093/nar/gkab507.

Yin J#, Liu M#, Liu Y#, Wu J, Gan T, Zhang W, Li Y, Zhou Y & Hu J (2019). Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discovery 5, 819. doi: 10.1038/s41421-019-0088-8.

Zuo E#, Huo X#, Yao X#, Hu X#, Sun Y#, Yin J#, He B, Wang X, Shi L, Ping J, Wei Y, Ying W, Wei W, Liu W, Tang C, Li Y, Hu J* & Yang H*. (2017). CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology 18(1):224. doi: 10.1186/s13059-017-1354-4.

Lin SG#, Ba Z#, Du Z#, Zhang Y, Hu J* & Alt FW*. (2016). A highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA 113(28):7846-51. doi:10.1073/pnas.1608649113.

Hu J#, Meyers RM#, Dong J, Panchakshari RA, Alt FW* & Frock RL*. (2016). Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nature Protocols 11(5): 853-71. doi: 10.1038/nprot.2016.043.

Hu J#, Zhang Y#, Zhao L, Frock RL, Du Z, Meyers RM, Meng F-L, Schatz DG, & Alt FW. (2015). Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163(4): 947-59. doi: 10.1016/j.cell.2015.10.016.

Frock RL#, Hu J#, & Alt FW. (2015). Mechanisms of recurrent chromosomal translocations. In book: Chromosomal Translocations and Genome Rearrangements in Cancer. Springer International Publishing, ISBN: 978-3-319-19983-2. doi: 10.1007/978-3-319-19983-2

Frock RL#, Hu J#, Meyers RM, Ho Y-J, Kii E, & Alt FW. (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology 33(2):179-86. doi: 10.1038/ nbt.3101.

Hu J#, Tepsuporn S#, Meyers RM, Gostissa M*, & Alt FW*. (2014). Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci USA 111(28): 10269-74. doi: 10.1073/pnas.1410112111.

Tepsuporn S#, Hu J#, Gostissa M*, & Alt FW*. (2014). Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol. Res. 2(9): 857-66. doi: 10.1158/2326-6066. CIR-14-0090.

Hu J, Sun L, Shen F, Chen Y, Hua Y, Liu Y, Zhang M, Hu Y, Wang Q, Xu W, Sun F, Ji J, Murray JM, Carr AM, & Kong D. (2012). The intra-S phase checkpoint pathway targets Dna2 to prevent stalled replication forks from reversing. Cell 149(6): 1221-32. doi: 10.1016/j.cell.2012.04.030.
Teaching
Immunology; Immunology Experiments
Laboratory Introduction
Cells are the basic units of living organisms, each serving as a complex and intricate ecosystem, maintaining delicate balance both internally and externally. Internally, cells possess complicated subcellular structures, with the nucleus serving as the container for genetic material, characterized by a complex chromatin environment including complex chromatin structures and epigenetic information. Externally, cellular interactions are crucial for sustaining biological systems. While extensive research has been conducted on cell-cell communications with the immune and nervous systems as models, our current understanding is still limited. Within the immune system, there exists a class of highly specific molecules - B cell receptors and T cell receptors, with the former secreted as antibodies. With rapid advancements in research technologies and continuous accumulation of scientific data, the focus of research is gradually shifting from lower model organisms towards humans themselves, with research becoming more systematic. In our laboratory, we primarily study immune cells from mice and humans, focusing on:
1. Investigating the relationship between DNA replication, DNA damage, DNA metabolism, genome stability, and tumor occurrence in the complex chromatin environment of mammals.
2. Exploring changes in lymphocyte function and associated DNA metabolism changes over time and across different tissues, at temporal and spatial scales, during the aging process.
3. Studying the development and maturation mechanisms of antibodies and utilizing synthetic biology techniques to modify cells, promoting antibody production and antibody evolution.

Laboratory Phone:62744611