Home > RESEARCH >Research News RESEARCH

MicroRNA duplication accelerates the recruitment of new targets during vertebrate evolution

Mar 14,2018

The repertoire of miRNAs has considerably expanded during metazoan evolution, and duplication is an important mechanism for generating new functional miRNAs. However, relatively little is known about the functional divergence between paralogous miRNAs and the possible co-evolution between duplicated miRNAs and the genomic contexts. By systematically examining small RNA expression profiles across various human tissues and interrogating the publicly available miRNA:mRNA pairing chimeras, we found that changes in expression patterns and targeting preferences are widespread for duplicated miRNAs in vertebrates. Both the empirical interactions and target predictions suggest evolutionarily conserved homo-seed duplicated miRNAs pair significantly higher numbers of target sites compared to the single-copy miRNAs. Our birth-and-death evolutionary analysis revealed that the new target sites of miRNAs experienced frequent gains and losses during function development. Our results suggest that a newly emerged target site has a higher probability to be functional and maintained by natural selection if it is paired to a seed shared by multiple paralogous miRNAs than being paired to a single-copy miRNA. We experimentally verified the divergence in target repression between two paralogous miRNAs by transfecting let-7a and let-7b mimics into kidney-derived cell lines of four mammalian species and measuring the resulting transcriptome alterations by extensive high-throughput sequencing. Our results also suggest that the gains and losses of let-7 target sites might be associated with the evolution of repressiveness of let-7 across mammalian species.

Nature vs. nurture in human sociality: multi-level genomic analyses of social conformity

Mar 01,2018

Social conformity is fundamental to human societies and has been studied for more than six decades, but our understanding of its mechanisms remains limited. Individual differences in conformity have been attributed to social and cultural environmental influences, but not to genes. Here we demonstrate a genetic contribution to conformity after analyzing 1,140 twins and single-nucleotide polymorphism (SNP)-based studies of 2,130 young adults. A two-step genome-wide association study (GWAS) revealed replicable associations in 9 genomic loci, and a meta-analysis of three GWAS with a sample size of ~2,600 further confirmed one locus, corresponding to the NAV3 (Neuron Navigator 3) gene which encodes a protein important for axon outgrowth and guidance. Further multi-level (haplotype, gene, pathway) GWAS strongly associated genes including NAV3, PTPRD (protein tyrosine phosphatase receptor type D), ARL10 (ADP ribosylation factor-like GTPase 10), and CTNND2 (catenin delta 2), with conformity. Magnetic resonance imaging of 64 subjects shows correlation of activation or structural features of brain regions with the SNPs of these genes, supporting their functional significance. Our results suggest potential moderate genetic influence on conformity, implicate several specific genetic elements in conformity and will facilitate further research on cellular and molecular mechanisms underlying human conformity.

Effects of the Qinghai-Tibet Railway on the Landscape Genetics of the Endangered Przewalski’s Gazelle (Procapra przewalskii)

Dec 24,2017

The Przewalski’s gazelle (Procapra przewalskii) is one of the most endangered ungulates in the world, with fewer than 2,000 individuals surviving in nine habitat fragments on the Qinghai-Tibet Plateau and isolated by human settlements and infrastructure. In particular, the Qinghai-Tibet railway, which crosses the largest part of the gazelle’s distribution, remains a major concern because of its potential to intensify landscape genetic differentiation. Here, using mtDNA sequencing and microsatellite genotyping to analyze 275 Przewalski’s gazelle samples collected throughout the range, we observed low level of genetic diversity (mtDNA π = 0.0033) and strong phylogeographic structure. Overall, the nine patches of gazelles can be further clustered into five populations, with a strong division between the eastern vs. western side of Qinghai Lake. Our study provides the first evidence of the genetic divergence between the Haergai North and Haergai South gazelle populations, corresponding to the recent construction of a wired enclosure along the Qinghai-Tibet railway less than ten years ago, an equivalent of five generations. Well-designed wildlife corridors across the railway along with long-term monitoring of the anthropogenic effects are therefore recommended to alleviate further habitat fragmentation and loss of genetic diversity in Przewalski’s gazelle.

A total of 140 records Total 12 5 Page Home Previous page Next page Shadowe Jump to